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LETTER TO THE EDITOR

Periodic kinks in reaction–diffusion systems

P V Gordon† and S A Vakulenko‡
Institute for Problems of Mechanical Engineering, Russian Academy of Science, 199178, St
Petersburg, VO Bolshoy pr. 61, Russia

Received 8 July 1997, in final form 8 November 1997

Abstract. In this letter we show that, in nonlinear dissipative homogeneous media, a new
effect is possible: the propagation of nonlinear waves (kinks) with time periodic rates. Our
example is a reaction–diffusion system consisting of equations of Ginzburg–Landau’s type.

1. Introduction

Nonlinear wave propagation plays a key role in physics, biology and chemistry.
Beginning with the well known works [1, 2], a number of papers have been focused on

travelling wave solutions. For one-dimensional media, these waves (kinks) have the form
u = u(x−vt), wherev is the velocity. When we deal with parabolic equations (or so-called
monotone systems [3]) all the wave solutions have such a form.

Not all systems are monotone; the asymptotic behaviour of solutions of monotone
systems is rather well understood: they converge either to a nondistributed equilibrium, to
travelling waves or to a system of waves propagating with different velocities. It is expected
that a small perturbation destroying the monotone character could lead to a very complicated
behaviour, including periodically and even chaotically oscillating fronts. This has been
shown in [4, 5] for general non-monotone systems, but these models have a complicated
form.

The aim of this work is to show that, even for simplest reaction–diffusion systems with
cubic nonlinearities (describing homogeneous media), this effect is possible. Namely, the
kinks exist, but their forms are complicated. They move with time-periodic velocities within
long time intervals.

The model under consideration is
∂ui

∂t
= ∂2ui

∂x2
+ 2(ui − u3

i )+ εfi(u) (1)

wherex ∈ R, the vectoru = (u1, u2, . . . un) is an order parameter,ε is a small number and
functionsfi are smooth and bounded.

First, let us describe a general approach to these systems [4, 5].

2. Investigation of system (1)

For smallε and special initial data, system (1) can be reduced to some ordinary differential
equations (ODE) [4, 5].

† E-mail address: gordon@mech.ipme.ru
‡ E-mail address: vakul@microm.ipme.ru

0305-4470/98/030067+04$19.50c© 1998 IOP Publishing Ltd L67



L68 Letter to the Editor

We shall seek the solution of (1) in the following form

ui(x, t) = tanh(x − qi(t))+ wi(x, t). (2)

Suppose initial dataui(x, 0) have the form (2), where functionswi(x, t) at the initial
moment (t = 0) satisfy

sup|wi(x, t)| < Cε C > 0 (3)

whereC is some constant.
Briefly, the method can be described as follows. We make the substitutionu→ (w, q),

w = w(x, t), q(t) = (q1(t), q2(t), . . . , qn(t)) where parametersqi(t) are defined by∫ ∞
−∞

cosh−2(x − qi(t))w(x, t)dx = 0 i = 1, 2, . . . n. (4)

This condition has a transparent interpretation. We approximate the solutionui(x, t, ε)

with a maximal accuracy in theL2-norm by the unperturbed fronts tanh(x−qi) (which give
the exact solution forε = 0). One can show, for smallwi , this substitutionu→ (q,w) is
correctly defined and allows us to findqi . The functionwi describes a small distortion ofith
front. These distortions occur due to the perturbationsεfi . Note that the functions cosh−2

are the Goldstone modes generated by the kink translations. Thus, from the physical point of
view, equations (4) mean that from the correctionswi we exclude some basic contributions
connected with translation motions. (This is a classical idea; see for example [6, 7].)

Physically, the solutionu = (u1, u2, . . . , un) can be considered as a connected state of
the kinks. Each kink has the corresponding coordinateqi(t) and the velocityvi = dqi/dt .

Proposition.
(1) There exists a constantC1 such that, for sufficiently smallε, one has|wi(x, t)| < C1ε

(this means that the front distortions remain small).
(2) Functionsqi satisfy

dqi
dt
= εh̃i(w, q, ε) h̃i = 3

4
hi(q)+ γi(w, q, ε) (5)

where|γi | < Cγ ε and

hi = −
∫ ∞
−∞

fi(tanh(x − q1), tanh(x − q2), . . . , tanh(x − qn)) cosh−2(x − qi) dx. (6)

This assertion is sufficiently standard and can be proved by classical methods [7, ch 5].
Similar results were obtained in [4, 5].

As a consequence of the translation invariance, system (5) can be simplified. In fact, it
is easy to see that the functionshi depend only on the coordinate differencesqi − qj .

Define new (relative) coordinatesQi = qi − qn, i = 1, . . . n− 1. Then system (5) can
be rewritten (we remove small correctionsγi and use a rescaling timeτ = 3εt/4)

dQi

dτ
= Hi(Q) dqn

dτ
= hn(Q) (7)

whereHi = hi − hn, Q = (Q1,Q2, . . .Qn−1) and i = 1, . . . , n− 1.
The variablesQi specify relative positions of kinks in the connected state of the

kinks. The time evolution of the mass centre of the kinks system is defined byqc =
n−1(q1+ q2+ · · · + qn).

Below we shall show, that even for linear functionsfi , the coordinatesQi andqc can
periodically oscillate.
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3. The periodic motion of nonlinear waves

Let us consider system (1) withn = 3 and set

f1 = −u3+ µ f2 = u3+ µ f3 = u1− u2+ µ (8)

whereµ is a parameter.
The asymptotic solution has the form (2). Following section 2, let us introduce the

relative coordinatesQ1 = q1− q3,Q2 = q2− q3.
Then equations (7) lead to

dQ1

dτ
= F(Q2)

dQ2

dτ
= −F(Q1) (9)

where the functionF is defined by

F(Q) = 2

tanhQ
− 2Q

sinh2Q
. (10)

This system is a Hamiltonian conservative system, with energy

E = Q1

tanhQ1
+ Q2

tanhQ2
. (11)

Clearly, all the solutions of (9) are time periodic. For the original coordinatesqi we obtain

q1 = −Q2− 2µτ q2 = −Q1− 2µτ q3 = −Q1−Q2− 2µτ. (12)

Therefore, the motion of the centre mass of this kink system is periodic and is defined
by

qc(t) = 1
3(q1+ q2+ q3) = − 2

3(Q1+Q2)− µ 3
2εt. (13)

Finally, the basic physical results are as follows. The nonlinear wave is a kink system (the
connected state of kinks). The mass centre of this system propagates with a time periodic
speedV . Moreover, all kinks periodically oscillate at this mass centre. The kink centre
mass average velocity is constant and is equal toV̄ = 3

2εµ. Whenµ = 0, we observe the
standing connected states of the periodically oscillating kinks. In the caseQ1 = Q2 = 0
we obtain a stable travelling front (oscillations vanish).

4. Results of computer simulations. Conclusion

These results have been checked by computer simulations. Actually, the periodic oscillations
occur, however, (depending onε) they are slowly damped and for large times we observe
a standing wave. The periodic regime exists within time intervals of the orderε−2. For
largeε, the kink fronts are strongly distorted, the periodic motion vanishes and the standing
wave appears at once.

These results can be analytically explained, if we take into account the small dissipative
termsεγi(q, t) removed in (9).

In fact, the original system (1) is dissipative, thus theexact system (5) has the same
property. On the other hand, truncated systems (6) and (9) are conservative. Therefore, one
concludes that the dissipation in the kink evolution is induced by the small correctionsεγi .

These dissipative contributions break the periodic motion. Since they are very small, in
comparison with the principal terms (9), actually system (6) (describing the kink motion)
is a nonlinear oscillator with a small lubrication. Clearly, it generates the slowly damping
periodic oscillations.
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It is interesting to compare this effect with the well known breather occurring in sine-
Gordon equation [8]. The breather is a localized and immobile connected state of two kinks
(solitons). In contrast to the breather, our waves can move as a whole with periodic rates.
Another important difference is that our solution is structurally stable: it survives under
small perturbations (for example, one can replace 2(u− u3) with any bistable nonlinearity)
whereas the breather is unstable and vanishes even under small perturbations of the sine-
Gordon equation. (This has been well understood in the last few years, see for example
[8].) Finally, the third difference is that the breathers exist eternally, whereas these periodic
kinks survive for a long (but finite) time.
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